Península ibérica…

Si nos preguntan qué países conforman geográficamente la península ibérica, casi sin pensarlo responderemos: España y Portugal. Si nos paramos un poco más quizá añadamos Andorra, y, con suerte, Gibraltar. Pero… ¿y Francia?

Tradicionalmente se ha establecido la frontera de la península en la cordillera pirenaica, si bien el istmo se encuentra situado en la línea recta que une el punto central de los golfos de Vizcaya y León -entre las ciudades de Bayona y Narbona-, quedando por tanto comprendida una franja meridional de territorio francés al sur del istmo.

No se incluye la zona meridional francesa en la división política porque políticamente no se le considera parte de la península ibérica, aunque geográficamente sí pertenece a ella.

Fuente: https://es.wikipedia.org

Posición corta…

Un vendedor en corto pide prestada una acción que cuesta 5.000 euros para un plazo de cinco días.

El primer día la vende y espera. A los cinco días la acción ha bajado a 3.000 y lo que hace es volver a comprarla y devolverla.

El vendedor en corto ha ganado con esta operación 2.000 euros.

Esta estrategia se usa para empresas que están a la baja, dado que, si la acción sube en esos cinco días a 8.000, al devolverla en el plazo establecido habrá perdido 3.000 euros.

Fuente: www.20minutos.es

Tetrafobia…

La tetrafobia es una aversión o miedo al número cuatro. Es una superstición muy común en el este asiático, especialmente en países como China, Japón, Corea, Vietnam y Taiwán​ como así también en el sudeste asiático.

Probablemente dicha aversión se origina en el hecho que la palabra china que se usa para el cuatro (四, pinyin: ), suena muy parecido a la palabra que se utiliza para muerte (死, pinyin: ).

En estos países los números generalmente se saltean en los edificios, desde hoteles y oficinas hasta departamentos, como también en los hospitales; en las bodas o eventos similares, a las mesas 4, 14, 24, etc. se las deja a menudo a un lado. En muchos complejos residenciales los números 4, 14, 24, etc. son reemplazados por 3a, 13a, 23a, etc. En Taiwán, la tetrafobia es tan común que no hay «4» o «x4» en direcciones, patentes de automóviles, y casi cualquier cosa relacionada con los números.

En ciudades donde la cultura del este y la del oeste se mezclan, como Hong Kong y Singapur, es posible que en algunos edificios tanto el piso trece como el catorce no existan, como así también todos los demás con cuatro. Por ejemplo, en Hong Kong algunos edificios como Vision City​ y The Arch no tienen ningunos pisos numerados de 40 a 49.

En Corea, la tetrafobia es menos extrema, pero el piso cuatro se salta en hospitales y otros edificios públicos similares. En otros edificios, el cuarto piso generalmente se marca con la letra «F» (four – cuatro) en lugar del cuatro en los ascensores. Los departamentos que contienen el número cuatro varias veces (como el 404) generalmente son evitados a un extremo que hace desvalorizar la propiedad.

Fuente: https://es.wikipedia.org

¿Para qué lloramos de emoción?

Todos los vertebrados terrestres poseemos glándulas lacrimales cuya función primordial es la de mantener el ojo húmedo y limpio, libre de partículas irritantes como polvo o gases molestos (como por ejemplo, el gas syn-propanethial-S-óxido que se desprende de las cebollas una vez las cortamos y que todos hemos comprobado cómo nos hace llorar).

Se trata pues de una función mecánica y también anti-infecciosa -en las lágrimas hay numerosas enzymas que impiden la colonización de diversos gérmenes- que evita lesiones a un órgano tan importante como el ojo.

Sin embargo; los humanos no sólo emitimos lágrimas ante una situación irritante para el órgano visual, sino que también lo hacemos en situaciones muy emotivas, bien de pena, de alegría, acompañando a la risa o porque nos emociona una canción, por poner algunos ejemplos que todos hemos vivido alguna vez.¿Por qué poseemos este mecanismo que ningún otro animal tiene, qué hace que nuestras lágrimas tengan una función distinta a la puramente mecánica de limpieza?

Podemos clasificar las lágrimas en 3 tipos diferentes:

  1. Lágrimas basales: humedecen el ojo cada vez que parpadeamos y están siempre presentes.
  2. Lágrimas de reflejo: aquellas que se producen como consecuencia de un factor irritante: humo, cebollas, polvo, etc.
  3. Lágrimas emocionales: tanto debidas a fuertes emociones como a un traumatismo doloroso

Son éstas últimas las que nos llaman particularmente la atención y están ausentes en el mundo animal. Es interesante constatar que éstas últimas tienen una composición distinta a las dos primeras, así la concentración de proteínas de las lágrimas emocionales es un 24% superior a la de los dos tipos anteriores. También contienen una muy alta concentración de manganeso.

Además, se ha demostrado que, entre esas proteínas, las lágrimas emocionales contienen varias hormonas: prolactina y hormona adrenocortical entre otras. Según los expertos, eliminar estas substancias vía lacrimal tendría una función de-toxicadora, reducir los niveles de estas hormonas tendría un efecto positivo anti-estrés y de ahí la sensación de bienestar que se percibe frecuentemente tras el llanto.

Otra función de las lágrimas sería generar una reacción de empatía por parte del observador de esa reacción, esto habría servido para mejorar nuestra atención sobre los niños en particular pero en general sobre todos aquellos que sufren.

 

BONUS: ¿A qué se debe la expresión lágrimas de cocodrilo?

Los cocodrilos también tienen glándulas lacrimales, con la función de limpieza que hemos descrito anteriormente, pero lo realmente interesante es que lloran cuando comen. Los caimanes emiten lágrimas al masticar su comida, es decir… vierten lágrimas mientras despedazan y se comen a los incautos que se han acercado demasiado a sus aguas.

De ahí nació la expresión “lágrimas de cocodrilo” que describe la falsedad de sentimientos. No se conoce exactamente cuál es la razón por la que estos animales secretan lágrimas durante la ingesta de alimentos.

Fuente: https://naukas.com

Niveles de alerta por nieve…

NIVEL VERDE
-Es cuando comienza a nevar.
-Prohibido pasar de 100 km/h. en Autopistas y Autovías. En el resto de carreteras no se puede superar los 80 km/h.
-Los camiones tienen que circular por el carril derecho y no pueden adelantar.
-Evitar los puertos de montaña.

NIVEL AMARILLO
-La carretera comienza a cubrirse o está parcialmente cubierta de nieve.
-Los camiones tienen prohibido circular.
-Los turismos y autobuses no deben pasar de 60 km/h.
-Evitar las maniobras bruscas.
-En las curvas y en los descensos disminuir más la velocidad.

NIVEL ROJO
-La carretera está cubierta de nieve.
-Se prohíbe circular a vehículos articulados, camiones y autobuses.
-Sólo se permite circular con cadenas o neumáticos de invierno a 30 km/h..
-No adelantes a un vehículo inmovilizado si no estás totalmente seguro de poder continuar.

NIVEL NEGRO
-Hay mucho espesor de nieve en la calzada.
-Con este nivel está prohibida la circulación.
-Alto riesgo de quedarse inmovilizado.
-Si te quedas bloqueado, usa la calefacción y no salgas del vehículo si no hay un refugio.
-Para no obstaculizar la vía (por ejemplo al quitanieves), deja el vehículo lo más orillado posible.

Fuente: www.lavanguardia.com

Año nuevo viejo…

El año nuevo viejo o año viejo ortodoxo o año nuevo ortodoxo o año nuevo juliano, es una fiesta no oficial que se celebra en países de tradición religiosa ortodoxa. La festividad es por el inicio del año según el calendario juliano, que en los siglos XX y XXI es el 14 de enero.

La tradición del año nuevo viejo se ha seguido celebrando en Ucrania, Bielorrusia, Georgia y los países integrantes de la antigua República Yugoslava, Bosnia y Herzegovina, Macedonia, Montenegro y Serbia, ya que la iglesia ortodoxa serbia y la iglesia ortodoxa de Macedonia continúan celebrando sus fiestas y vacaciones acordes con el calendario juliano.

Aunque la Rusia Soviética oficialmente adoptó el calendario gregoriano en 1918, la iglesia ortodoxa rusa continuó usando el calendario juliano. El año nuevo se hizo una festividad celebrada en ambos calendarios.

Fuente: https://es.wikipedia.org

Números tarjeta bancaria…

El número de nuestra tarjeta consta de 16 dígitos. Están separados en grupos de 4 para poder identificarlo mejor, es decir, no es porque cada grupo de 4 dígitos signifique una cosa, sino que la razón eminentemente práctica:

1234567812345678

El significado de esos 16 números es el siguiente:

  • Los cuatro primeros dígitos (1234) son el número de identificación de la entidad que nos proporciona la tarjeta, que es diferente según la entidad a la que corresponde (hasta siendo de la misma entidad, dos tarjetas de distintos continentes pueden tener números distintos).
  • El siguiente dígito, (5) indica el tipo de tarjeta y la entidad financiera a la que corresponde (American Express, VISA, …).
  • Los diez dígitos posteriores (6781234567) son algo así como el número de identificación del usuario al que pertenece la tarjeta, que lo identifican de forma única.
  • El dígito final (8) es un dígito de control.

Y en este último punto es donde entras las matemáticas. El dígito de control se calcula a partir de los dígitos anteriores y sirve para confirmar que el número de la tarjeta es un número válido. Tengamos en cuenta que hay muchos lugares donde se pueden introducir números de tarjeta, por lo que es interesante que exista un algoritmo para desechar números de tarjeta falsos.

El algoritmo que se utiliza para calcular el dígito de control de una tarjeta se denomina algoritmo de Luhn, y se debe al informático alemán Hans Peter Luhn. Está basado en la aritmética modular y los pasos a seguir son los siguientes:

    1. De izquierda a derecha, tomamos las cifras que aparecen en las posiciones impares y las multiplicamos por 2. Si el número obtenido es menor que 10 nos quedamos con él y si es mayor que 10 sumamos las cifras de ese número y nos quedamos con el resultado (esto es, calculamos el valor del resultado módulo 9).
    2. Sumamos todos los resultados obtenidos en el paso anterior. Digamos que esa suma vale A.
    3. Sumamos todos los dígitos que aparecen en las posiciones pares del número de la tarjeta (excepto el dígito de control, que es el que no sabemos). Llamemos B a dicha suma.
    4. Ahora sumamos los dos resultados anteriores. Tomamos el valor de esta suma y vamos restando 10 hasta obtener un número entre 0 y 9 (es decir, calculamos Suma módulo 10). Entonces el dígito de control (DC) es 10 menos ese número obtenido. Expresado matemáticamente:

      DC = 10 – (A + B mod 10)

Para saber si un número de tarjeta es falso lo que podemos hacer es añadir el último dígito del número (el supuesto dígito de control) a la suma de los dígitos de las posiciones pares. Si el resultado de A+B no es múltiplo de 10 (es decir, si no es igual a 0 módulo 10) entonces el número de la tarjeta es falso.

Fuente: https://www.gaussianos.com

Etiqueta de seguridad…

¿A quién no le ha pitado alguna vez la alarma al salir de la tienda con las compras? Y todo por el descuido del empleado o empleada de turno que olvida desactivar el dispositivo. Cualquier artículo con la protección electrónica activada que pase entre dos tabiques lectores colocados a la salida del comercio, provocará que éstos emitan un pitido de alarma.

El estridente pitido que llama la atención del guardia de seguridad, de los empleados y del resto de clientes, tiene su origen en una pequeña etiqueta adherida al artículo en un lugar cada vez más inaccesible.

En el interior de los tabiques existen unas antenas que generan un campo electromagnético de alta frecuencia. Las etiquetas están equipadas con un condensador que vibra por efecto del campo emitiendo una onda de radio -de una frecuencia totalmente predeterminada- que interfiere en el campo provocando que un sistema de audio produzca el agudo pitido.

Cuando la mercancía se abona correctamente, el vendedor debe colocar brevemente el artículo con la etiqueta de seguridad sobre un aparato que desactiva el condensador. Este aparato suele estar oculto bajo un mostrador sobre el que se pasa repetidas veces el artículo.

Lo que hace este aparato desactivador es exponer el condensador de la etiqueta a una carga eléctrica de corta duración pero de una intensidad lo suficientemente elevada como para destruir el condensador al exceder su capacidad de carga. Con el condensador desactivado la alarma ya no suena.

Fuente: www.sabercurioso.es

 

Ojo mágico…

Se llama ojo mágico u ojo eléctrico a una válvula de vacía desarrollada que incluye una pequeña pantalla de rayos catódicos. Se utilizó principalmente como indicador de sintonía en las radios de gama alta. El efecto que se produce es que una zona luminosa crece o decrece según el nivel de señal. Esto hacía que el usuario pudiese sintonizar el aparato perfectamente.

El tubo es cilíndrico, con la pantalla en la parte de arriba, formada por un ánodo en forma de cono invertido recubierto de fósforo. El haz de electrones sale del centro, creando una iluminación en forma de dos abanicos simétricos que se abren y cierran. La forma circular de la pantalla, con el círculo central oscuro recuerda la pupila de un ojo, de ahí el nombre del tubo.

Fuente: https://es.wikipedia.org

Visión submarina azul-verdosa…

Nuestros ojos son buenos sensores para la mayor parte de las longitudes de onda que emite el Sol y consiguen atravesar la atmósfera, pero traspasar el agua es más complicado. Se denomina nivel eufótico a la profundidad por debajo de la cual no queda luz suficiente como para que se desarrolle la fotosíntesis, aproximadamente un 1% de la que disfrutamos en superficie. En función de la turbidez del medio acuático, esta profundidad puede ser de apenas unos decímetros en algunos pantanos o llegar a los 200 m en las regiones tropicales de los océanos.

La radiación del Sol está compuesta por luz de varios colores, cada uno con su longitud de onda, desde las más largas del infrarrojo hasta las más cortas del ultravioleta, pasando por las visibles. Pues bien, resulta que el agua es más eficaz absorbiendo la luz cuanto mayor es su longitud de onda. Así, el color rojo no penetra más allá de los 5 metros de profundidad, las tonalidades naranja desaparecen alrededor de los 15 seguidas de las amarillas a unos 30, las verdes a unos 45-50 y finalmente el color azul que persiste hasta los 55-60 metros de profundidad e incluso los tintes violeta algo más allá.

Esto explica que las fotos submarinas tengan a menudo ese característico tinte azul-verdoso. Por el mismo motivo es buena idea llevar una linterna en cualquier inmersión, para poder recuperar los colores perdidos: la experiencia de bucear en un banco de coral a 20 m gana muchísimo con ayuda de una linterna, incluso cuando la cantidad de luz total es suficiente.

Fuente: https://naukas.com

Cráteres redondos…

Todos hemos visto lo que pasa cuando tiramos una piedra contra el suelo en ángulo. Si cae sobre una superficie rígida, rebota y sigue su camino, chocando de vez en cuando contra el suelo hasta que la fricción disipa toda su energía y se detiene por completo. En cambio, si hacemos el mismo experimento sobre arena o barro, la piedra excavará un surco más o menos alargado en la dirección en la que se estaba moviendo. Y a primera vista da la impresión de que un meteorito debería hacer lo mismo al estrellarse en ángulo contra el suelo.

Pero no, no es eso lo que ocurre.

Además de la masa involucrada, existe una diferencia crucial entre la piedra lanzada por una persona y un meteorito: la velocidad con la que la roca toca el suelo. El ser humano medio conseguirá que la piedra se estrelle contra la superficie terrestre a algunas decenas de kilómetros por hora, pero los meteoritos llegan al suelo a velocidades de decenas de kilómetros por segundo (km/s).

Por ejemplo, el trabajo que realiza un meteorito (con toda su energía) durante su paso por la atmósfera consiste en sacudir de manera muy violenta las moléculas del gas. Como la temperatura no es más que un reflejo de lo rápido que se mueven las moléculas que componen un objeto, el choque del meteorito contra la atmósfera comprime y calienta el aire frente a él. La temperatura aumenta tanto que el aire se vuelve incandescente y, además, provoca que se expanda y produzca ondas de presión. El fenómeno es tan violento, que incluso es posible que el meteorito explote en la atmósfera.

Pero, claro, los meteoritos no se van a deformar mucho ante estas fuerzas porque son cuerpos rígidos. En su lugar, la estructura del meteorito acumulará tensiones en sus imperfecciones hasta que su punto más débil se desmorone ante la presión. Es entonces cuando, toda la tensión acumulada en el material se libera de golpe, produciendo la explosión. El proceso se puede visualizar mejor con una pila de monedas: si las apilamos de manera que queden perfectamente alineadas y luego comprimimos el montón entre los dedos, la estructura aguantará perfectamente la presión pero, si una de las monedas está mal alineada y aplicamos demasiada presión sobre el sistema, saldrá disparada y el resto de monedas caerán tras ella.

Un meteorito suficientemente grande o resistente no reventará al entrar en contacto con el aire. Si el meteorito sobrevive a su accidentado viaje a través de la atmósfera, entonces llegará hasta el suelo y realizará tanto trabajo como la energía que le quede le permita.

Cuando un meteorito se estrella contra la superficie (a velocidades de varios kilómetros por segundo), el aire se comprime muchísimo frente a él, por lo que se calienta hasta temperaturas tremendas y se expande, formando una onda de choque. En el momento en el que toca la superficie, también comprime violentamente la roca, lo que provoca otra onda de choque que se propaga a través del suelo. La presión y la fricción generadas calientan todo el material hasta temperaturas que pueden vaporizar la roca y, como podréis imaginar, de todo este desastre sale despedida una gran cantidad de materia, ya sea en forma de trozos de roca de distintos tamaños, polvo o gas.

Y aquí está finalmente la respuesta a la incógnita de hoy: la inmensa mayoría de los cráteres son redondos porque el impacto de un meteorito se parece más a una explosión que a un choque. Dicho de otra manera, la energía liberada durante el impacto es tan enorme en comparación con lo que pueden soportar los materiales involucrados en la colisión que poco importan la velocidad y la trayectoria que llevara el meteorito, porque las ondas de choque generadas tanto en el aire como en el suelo se expandirán de manera simétrica en todas las direcciones, dando la forma circular al cráter.

Fuente: https://cienciadesofa.com/2016/08/por-que-los-crateres-son-casi-siempre-redondos.html

Montaña rusa…

Las primeras montañas rusas descendieron de los paseos en trineo de invierno rusos que se realizaban en colinas de hielo especialmente construidas, ubicadas en los jardines de los palacios alrededor de la capital rusa, San Petersburgo, en el siglo XVIII. Esta atracción se llamaba Katalnaya Gorka o «montaña deslizante» en ruso. Los toboganes se construyeron a una altura de entre 70 pies (21 m) y 80 pies (24 m), tenían una caída de 50 grados, estaban reforzados con soportes de madera y tenían hielo en la parte superior. A veces se usaban carros con ruedas en lugar de trineos. Estos toboganes se hicieron populares entre la clase alta rusa y entre la propia Catalina II de Rusia, que hizo construir esas montañas en los jardines del Palacio de Oranienbaum (foto) cerca de San Petersburgo, con un pabellón al lado para tomar el té después del deslizamiento.

Al principio, estas atracciones eran principalmente para las clases altas. En 1845 se abrió un nuevo parque de atracciones en Copenhague, Tivoli , que fue diseñado para la clase media.

«Montañas rusas» sigue siendo el término para montañas rusas en muchos idiomas, como el español (la montaña rusa), el italiano (montagne russe) y el francés (les montagnes russes). Irónicamente, el término ruso para montaña rusa, американские горки (amerikanskie gorki), se traduce literalmente como «montañas americanas».

Fuentes:

  • https://en.wikipedia.org/wiki/Roller_coaster
  • https://en.wikipedia.org/wiki/Russian_Mountains

Reflejo de inmersión…

¿Cómo se manifiesta?

El reflejo de inmersión de los mamíferos se da siempre y cuando se entre en contacto con agua que esté a una temperatura baja, normalmente menor a 21ºC. Cuando más baja sea la temperatura el efecto será mayor.

También es necesario que, para que se active este mecanismo, el agua incida sobre la cara, puesto que es ahí donde se encuentra el nervio trigémino, compuesto por el oftálmico, el maxilar y el mandibular. Son estas tres ramas nerviosas únicamente localizables en la cara que, al activarse, inician el reflejo, que implica los siguientes procesos siguiendo este mismo orden:

1. Bradicardia

La bradicardia es la disminución de la frecuencia cardíaca. Cuando estamos buceando es necesario que reduzcamos el consumo de oxígeno y, por este motivo, el corazón empieza a reducir los latidos por minuto entre un 10 y 25%.

Este fenómeno depende directamente de la temperatura, haciendo que, cuanto más baja sea, menos latidos se hagan. Se han dado casos de personas que han hecho solo entre 15 y 5 latidos por minuto, algo muy bajo teniendo en cuenta que lo normal son 60 o más.

2. Vasoconstricción periférica

La vasoconstricción periférica o redistribución de la sangre implica llevarla hacia órganos más importantes, como el cerebro y el corazón. Los capilares sanguíneos se cierran selectivamente, mientras que se mantienen abiertos los de los órganos vitales principales.

Los primeros capilares en contraerse son los de los dedos de los pies y las manos, para luego dar paso a los pies y manos en su extensión. Finalmente, se contraen los de los brazos y las piernas, cortando la circulación sanguínea y dejando más riego sanguíneo al corazón y el encéfalo.

De esta forma se minimiza el posible daño causado por las bajas temperaturas y aumenta la supervivencia en caso de que haya privación de oxígeno prolongada. La hormona de la adrenalina tiene mucho protagonismo en este proceso, y es la que estaría detrás de que, cuando nos lavamos la cara con agua muy fría nos despertemos más rápido.

3. Introducción de plasma sanguíneo

Se introduce plasma sanguíneo dentro de los pulmones y otras partes de la caja torácica, haciendo que los alvéolos se llenen con este plasma, que se reabsorbe cuando se sale a un ambiente presurizado. De esta manera, se impide que los órganos de esta región queden aplastados por las altas presiones acuáticas.

También se produce plasma sanguíneo dentro de los pulmones. Cuando se bucea en bajas profundidades, de forma más mecánica, parte de la sangre se introduce en los alvéolos pulmonares. Así se protegen al aumentar la resistencia contra la presión.

Esta fase del reflejo de inmersión se ha observado en seres humanos,como sería el caso del apneista Martin Stepanek, durante apneas mayores de 90 metros de profundidad. De esta forma, las personas podemos sobrevivir más tiempo sin oxígeno bajo el agua fría que en tierra firme.

4. Contracción del bazo

El bazo es un órgano que se encuentra detrás y a la izquierda del estómago, cuya función principal es la reserva de glóbulos blancos y rojos. Este órgano se contrae cuando se da el reflejo de inmersión de los mamíferos, haciendo que libere parte de sus glóbulos a la sangre, aumentando la capacidad para transportar el oxígeno. Gracias a esto, aumenta de forma temporal el hematocrito un 6% y la hemoglobina un 3%.

Se ha visto que en personas entrenadas, como sería el caso de las Ama, unas buceadoras japonesas y coreanas que se dedican a la recogida de perlas, los aumentos en estas células son de alrededor del 10%, porcentajes cercanos a lo que les sucede a animales marinos como las focas.

Conclusión

El reflejo de inmersión de los mamíferos es un mecanismo que poseemos los seres humanos, evidencia ancestral de que poseemos un antepasado común entre aves y los demás mamíferos que debían vivir en medios acuáticos. Gracias a este reflejo, podemos sobrevivir sumergidos por un período de tiempo más o menos largo, entrenable como sería el caso de las ama japonesas y coreanas o, también, los bajau de Filipinas, poblaciones dedicadas a la pesca submarina.

Aunque los seres humanos no podemos ser considerados como animales marinos, lo cierto es que sí que podemos entrenar nuestra capacidad de inmersión. Podemos llegar a estar sumergidos 10 minutos e, incluso hay casos de personas que han superado los 24 minutos o más. No únicamente se puede aguantar largo tiempo bajo el agua, sino que se pueden alcanzar profundidades cercanas a los 300 metros.

Uno de tantos reflejos

Porque no solo está el típico reflejo rotuliano por el que extendemos la pierna cuando el médico nos golpea levemente en la rodilla con su martillo. Hay innumerables: está el pupilar o fotomotor, que contrae la pupila ante la luz; el estapedial, por el que se contrae el estribo y el oído se protege ante ruidos demasiado fuertes; el óculo-cardiaco o de Aschner, que de forma parecida al de buceo enlentece el corazón cuando presionamos los ojos.

Están los que tuvimos al nacer y perdimos: el de succión, que nos permite alimentarnos en un principio; el de apnea, por el que los bebés cierran la glotis al contacto con el agua para evitar que puedan tragarla; el de prensión palmar, por el cual cierran la mano cuando pasamos un objeto por sus palmas, el que nos acerca a ellos al hacernos pensar que se agarran conscientemente a nuestros dedos.  Un reflejo, el de prensión, que en realidad parece un vestigio de los primates en los que las crías se agarran con fuerza al pelo de sus madres cuando estas les transportan. Que desaparece, como muchos de ellos, a los pocos meses.

Fuentes:

Vacunas…

Hace 40 años que la viruela se eliminó de la faz de la Tierra, el 11 de septiembre de 1980 se dio por erradicada esa enfermedad que durante siglos dejó un reguero de muertes por todo el mundo, a excepción de algunas muestras conservadas en dos laboratorios, uno de Estados Unidos y otro de Rusia. Por ahora se trata de la única enfermedad humana que ha sido totalmente erradicada, aunque la sigue muy de cerca la polio. Tanto una como otra han podido enfrentarse gracias a las vacunas.

Se calcula que el ser humano tuvo sus primeros encontronazos con el virus Variola, causante de la viruela, allá por el año 10.000 a.C. De hecho, la mortalidad llegó a ser tan alta que se dice que en algunas culturas estaba prohibido poner nombre a los niños hasta que se comprobara que pasaban la enfermedad.

Sobran los motivos para que los médicos de todas las épocas mostraran una gran preocupación por esta patología, que empezaba con dos semanas de fiebre y letargo y después iba sembrando poco a poco la piel de los pacientes de pústulas.

Pero, lamentablemente, no todos lograron dar con tratamientos efectivos contra el problema. Es el caso del doctor Thomas Sydenham, cuyo protocolo consistía en mantener a los pacientes en habitaciones sin fuego, con las ventanas abiertas y la ropa de cama por debajo de la cintura, mientras consumían doce botellas pequeñas de cerveza cada 24 horas. Más allá de lo atractiva que pueda resultar a algunas personas la última parte del tratamiento, este no daba ningún tipo de resultado.

Lo que sí parecía funcionar era la variolación, un procedimiento que se había practicado tradicionalmente en la India, China y África y que no se introdujo en Europa hasta el siglo XVIII. Consistía en tomar con una lanceta un poco de los fluidos del interior de una pústula madura e introducirlos bajo la piel de brazos o piernas en personas que aún no hubiesen pasado la enfermedad. El procedimiento a veces evitaba que las personas inoculadas enfermaran, pero otros generaba complicaciones, como la aparición de infecciones, ya fuese por la propia viruela o por otras enfermedades, como la sífilis.

De Turquía a Inglaterra

En 1721, la aristócrata Lady Mary Wortley Montague insistió en que la variolación se introdujera en Inglaterra.

Ella misma había pasado la enfermedad durante su juventud y había visto fallecer a su hermano por el mismo motivo. Por eso, cuando su marido fue destinado a Turquía como embajador, quedó maravillada al ver a las mujeres turcas practicar esta técnica. En cuanto lo vio, ordenó al cirujano de la embajada que llevara a cabo el procedimiento con su propio hijo, de 5 años de edad. Más tarde, a su vuelta a Londres, el galeno repitió el procedimiento, esta vez con su hija, que por aquel entonces contaba 4 años.

Ninguno de los niños enfermó, por lo que la noticia llegó a oídos del rey, quien dio su aprobación para que se comenzara a experimentar con la técnica. Primero se llevó a cabo con varios prisioneros, a los que se les dio la opción de librarse de sus condenas si se dejaban inocular. Después se practicó con niños huérfanos. En todos los casos fue un éxito, como también lo fue posteriormente con algunos miembros de la aristocracia inglesa.

Muchos médicos comenzaron a practicarla a gran escala, por lo general con buenos resultados, aunque en un 2%-3% de las intervenciones los pacientes morían, ya fuera por viruela o por otras infecciones. Aun así se consideraba que valía la pena el riesgo.

Perfeccionando la técnica

La variolación siguió extendiéndose por Europa e incluso se exportó al entonces conocido como Nuevo Mundo. Pero seguía sin ser una técnica del todo segura.

Y no lo fue hasta la llegada de Edward Jenner. Este médico inglés había escuchado numerosas historias de lecheras que tras contraer la viruela bovina mientras ordeñaban al ganado quedaban protegidas de la viruela humana, mucho más letal.

En 1796, se puso en contacto con una joven lechera que aún tenía frescas las pústulas características de la viruela bovina. Esta dio su permiso para que tomara muestras de las mismas, con las que posteriormente el científico inoculó a un niño de 8 años, James Phipps. Pocos días después el pequeño desarrolló fiebre y algo de malestar, pero en poco más de una semana estaba perfectamente. Dos meses después, Jenner repitió el procedimiento con el mismo niño, que esta vez ya no manifestó ningún síntoma.

Con la vacuna de la viruela nació el proceso de vacunación, cuyo nombre procede precisamente de las vacas que portaban el virus con el que se infectaban las lecheras de las que se extraían las muestras.

De la vacuna de la viruela a la actualidad

El procedimiento usado por Jenner hoy no habría pasado ni mínimamente los requerimientos de un comité de bioética. Tampoco lo habría hecho el de Pasteur, quien también utilizó a un niño como “conejillo de indias” durante el desarrollo de la vacuna de la rabia. Aunque en este caso el pequeño había sido mordido por un perro rabioso y el experimento podría ser su única salvación.

Afortunadamente, los tiempos han cambiado y hoy en día no es necesario inocular huérfanos para probar la eficacia de una vacuna. Por desgracia, el cambio de los tiempos también ha fluido en otras direcciones menos positivas. Y es que, mientras que en el siglo XVIII había personas dispuesta a administrarse los fluidos de las pústulas de un enfermo, sabiendo que podían contraer la propia enfermedad que querían evitar o incluso una peor, hoy en día hay quien se niega a ponerse las vacunas más seguras de nuestra historia.

Fuente: https://hipertextual.com

Habeas Corpus…

La pretensión del «Habeas Corpus» es establecer remedios eficaces y rápidos para los eventuales supuestos de detenciones de la persona no justificados legalmente, o que transcurran en condiciones ilegales. Por consiguiente, el «Habeas Corpus» se configura como una comparecencia del detenido ante el Juez; comparecencia de la que proviene etimológicamente la expresión que da nombre al procedimiento, y que permite al ciudadano, privado de libertad, exponer sus alegaciones contra las causas de la detención o las condiciones de la misma, al objeto de que el Juez resuelva, en definitiva, sobre la conformidad a Derecho de la detención.

La eficaz regulación del «Habeas Corpus» exige, por tanto, la articulación de un procedimiento lo suficientemente rápido como para conseguir la inmediata verificación judicial de la legalidad y las condiciones de la detención, y lo suficientemente sencillo como para que sea accesible a todos los ciudadanos y permita, sin complicaciones innecesarias, el acceso a la autoridad judicial.

En fin, la ley está presidida por una pretensión de universalidad, de manera que el procedimiento de «Habeas Corpus» que regula alcanza no sólo a los supuestos de detención ilegal –ya porque la detención se produzca contra lo legalmente establecido, ya porque tenga lugar sin cobertura jurídica–, sino también a las detenciones que, ajustándose originariamente a la legalidad, se mantienen o prolongan ilegalmente o tienen lugar en condiciones ilegales.

Fuente: Ley Orgánica 6/1984, de 24 de mayo, reguladora del procedimiento de «Habeas Corpus».

Inmunidad de grupo…

La inmunidad de grupo o rebaño es lo que nos permite eliminar virus mediante el uso de vacunas. El porcentaje de población que es necesario vacunar para alcanzar la inmunidad de grupo se calcula en base al índice reproductivo básico (R0), que consiste en el promedio de personas a las que cada persona con el virus infectaría en condiciones normales o sin ningún tipo de intervención sanitaria o gubernamental, teniendo en cuenta la capacidad de infección de la enfermedad y su forma de propagación.

Numerosas enfermedades han sido erradicadas en muchos países gracias a la inmunidad de grupo a través de los programas de vacunación. Sin embargo, la inmunidad de rebaño no es algo que se pueda conseguir dejando que el virus se propague de forma natural.

Pongamos como ejemplo el sarampión, una enfermedad causada por un virus que ha existido en los seres humanos durante siglos. Se trata de una enfermedad altamente infecciosa con un R0 de 15, lo que significa que un niño con sarampión puede infectar de media a otros 15. Por lo tanto, alrededor del 95% de las personas necesitan ser resistentes a la enfermedad para que toda una población alcance la inmunidad de grupo.

La mayoría de las personas que se recuperan de una infección por sarampión producen una buena respuesta inmunológica que les protege durante el resto de su vida. Pero aún así, antes de que existiera la vacuna, el sarampión era una enfermedad infantil muy común. Cada nueva generación de niños era susceptible y no había suficientes personas que se volvieran inmunes de forma natural como para producir la inmunidad de grupo.

Los científicos creen que el valor R0 del SARS-CoV-2 está entre 4 y 6, algo similar al del virus de la rubeola. El porcentaje de vacunación necesario para crear inmunidad de grupo y erradicar la rubeola es del 85%.

Otros coronavirus (incluyendo el Sars, el Mers y algunos virus del resfriado común) no producen una respuesta inmunológica permanente como es el caso del sarampión. Según algunos estudios sobre la COVID-19, incluso en los lugares donde se han concentrado un gran número de casos y fallecimientos durante los últimos meses, menos del 10% de la población muestra signos de contar con una respuesta inmunológica contra la infección.

Es algo que sugiere que los índices naturales de resistencia al virus están muy lejos del 85% necesario para la inmunidad de grupo. Por lo tanto, sin vacuna el virus podría volverse endémico, presente de forma permanente entre la población al igual que los coronavirus que causan los resfriados.

Fuente: https://magnet.xataka.com