Ampliando el artículo de las mareas, veamos algunas curiosidades más:
Elipsoide
El agua de los océanos situada en el lado opuesto al Sol siente una fuerza que la empuja hacia el exterior de la órbita, mientras que el agua situada en el lado orientado hacia el Sol siente una fuerza que la empuja hacia dicho astro. La consecuencia es que la esfera de agua que recubre a la Tierra se alarga ligeramente y se transforma en un elipsoide de revolución cuyo eje mayor está dirigido hacia el Sol. Se verá que este alargamiento relativo es muy pequeño: del orden de uno entre diez millones.
Mareas solares
Como la Tierra gira, un punto situado en el ecuador ve la altura del mar llegar a un máximo (pleamar) dos veces por día: cada vez que dicho punto pasa por el semieje mayor. De la misma manera, cada vez que el punto pasa por un semieje menor, la altura del mar pasa por un mínimo (bajamar). Aunque la diferencia que se ha obtenido entre la pleamar y la bajamar es de 24,4 cm, no hay que olvidar que esto sólo es la parte debida al Sol y que no se han tenido en cuenta los continentes ni la inclinación del eje de rotación de la Tierra. La variación de la altura del mar se puede aproximar por una sinusoide con un período de 12 horas.
Mareas lunares
La amplitud de las mareas lunares es, aproximadamente, dos veces mayor que la de las mareas solares. Al igual que para las mareas solares, la variación de la altura del mar en un punto de la superficie terrestre se puede aproximar por una sinusoide. Esta vez, el período es 12 horas, 25 minutos y 10s.
Mareas vivas y muertas
Cuando los ejes mayores de los dos elipsoides están alineados, la amplitud de las mareas es máxima y se llaman mareas vivas o mareas sizigias. Esto sucede en las lunas nuevas y en las lunas llenas. En cambio, cuando el eje mayor de cada elipsoide está alineado con el eje menor del otro, la amplitud de las mareas es mínima. Esto sucede en los cuartos menguantes y los cuartos crecientes. Estas mareas se llaman mareas muertas o mareas de cuadratura.
Las mareas son máximas cuando las dos pleamares son iguales. Eso solo ocurre cuando el eje mayor de los elipsoides es paralelo al plano ecuatorial. Es decir, cuando el sol se encuentra en el plano ecuatorial. Esto ocurre durante los equinoccios. Las mareas de equinoccio son las mayores del año.
Líneas cotidales y puntos anfidrómicos
En un cálculo simplificado, en el cual la Tierra no tiene continentes y está recubierta de una hidrosfera continua, la distancia entre las dos posiciones de pleamar es de 20.000 km. La zona de océano cuyo nivel es más alto que el valor medio tiene un diámetro de 10.000 km. Esa distancia es mayor que la distancia entre América y Europa o África y se corresponde con el ancho del Océano Pacífico. Para que todo un océano como el Atlántico o el Pacífico aumentasen de nivel, su contenido total de agua tendría que aumentar. Como los continentes impiden ese movimiento lateral de todo el océano, el modelo de la onda semidiurna no se corresponde con la realidad.
En un modelo sin continentes, las líneas cotidales coinciden con los meridianos. En la imagen, en color están representadas las líneas cotidales del planisferio y el color del fondo corresponde a la amplitud de mareas. Estas líneas cotidales se corresponden con una situación astronómica particular (Luna creciente, equinoccios, etc.) y cambian con el tiempo. Se observa que hay líneas cotidales que convergen hacia puntos anfidrómicos, en los cuales la amplitud de la marea es igual a cero.
Las mareas en las costas
¿Cómo una marea de menos de un metro en alta mar puede crear una marea de varios metros en la costa? La razón es la resonancia de la capa de agua situada sobre la plataforma continental. Esta capa es poco profunda (menos de 200 m) y, en algunos casos, tiene una gran extensión hasta el talud continental. Por ejemplo, el Canal de la Mancha es una capa de agua de 500 km de largo (desde la entrada hasta el Paso de Calais), 150 km de ancho y solo 100 m de profundidad. Cuando el nivel del mar aumenta en la entrada, el agua entra en el Canal de la Mancha. Como la extensión es grande y la profundidad pequeña, la velocidad del agua aumenta hasta unos 4 a 5 kn (2 a 2,5 m/s). Alcanzar esa velocidad toma su tiempo (unas tres horas en el caso del Canal de la Mancha), pero detenerse también requiere un período similar.
Una vez lanzada, el agua continúa avanzando, transcurriendo otras tres horas hasta que se para e invierte su dirección. El comportamiento oscilatorio se debe a la inercia y al retardo que tiene la capa de agua para responder a la excitación: la variación de altura del océano más allá del talud continental. La marea será más grande en función de que el período de oscilación propio de la zona sea más próximo al periodo de la excitación externa, que es de 12 horas y 25 minutos.
Por el contrario, cuando el período propio se aleja de las 12,4 h, las amplitudes de las mareas son menores. El período de oscilación propio depende de la forma de la costa y de la profundidad y longitud de la plataforma continental.
Las mareas en la zona ecuatorial
En las áreas próximas al ecuador terrestre, las mareas suelen ser muy débiles, casi imperceptibles. El motivo de la escasa amplitud de las mareas en la zona intertropical se debe a que es la zona donde los efectos del movimiento de la rotación terrestre son mayores por la fuerza centrífuga generada por dicho movimiento. Debido a la fuerza centrífuga, el nivel del mar es mucho mayor en el ecuador que en las zonas templadas y, sobre todo, en las polares. Como resulta obvio, la mayor altura de las aguas ecuatoriales por la fuerza centrífuga impide que las mareas sean claramente notorias ya que esa fuerza centrífuga se ejerce por igual en toda la circunferencia ecuatorial mientras que las mareas sólo aumentan ese nivel donde se encuentra el paso de la Luna y el Sol, y es un aumento de nivel mucho menor.
Mareas atmosféricas
Al ser el aire atmosférico un fluido, como sucede con las aguas oceánicas, también las dimensiones de la atmósfera sufren la acción de las mareas, afectando su espesor y altura y, por consiguiente, la presión atmosférica. Así, la presión atmosférica disminuye considerablemente durante las fases de luna llena y luna nueva, al ser atraída la columna de aire por el paso, combinado o no, de la luna y el sol por el cenit y/o el nadir.
Por otra parte, hay que tener en cuenta que el aumento del espesor de la atmósfera por la atracción solar y/o lunar contribuye a la disminución de la presión, a la disminución de la velocidad de los vientos y al aumento de la condensación y de las lluvias.
Mareas terrestres
Las fuerzas de gravedad que provocan las mareas de los océanos también deforman la corteza terrestre. La deformación es importante y la amplitud de la marea terrestre llega a unos 25 a 30 cm en sizigia y casi 50 cm durante los equinoccios.
Frenado de la rotación
Tanto la deformación de la Tierra debida a las mareas terrestres como el movimiento del agua de las mareas acuáticas son procesos que disipan energía, frenando la rotación de la Tierra y aumentando la duración del día microsegundos por año (aproximadamente, 1 segundo cada 59.000 años).
De la misma manera que la Luna crea mareas en la Tierra, tanto acuáticas como terrestres, la Tierra también produce mareas sobre la Luna. La fricción debida a esas mareas frenó la rotación de la Luna, provocando que ésta presente siempre la misma cara hacia la Tierra.
Fuente: https://es.wikipedia.org